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Abstract

Temporal variations in the abundance and composition of intact polar lipids (IPLs)
in North Sea coastal marine water were assessed over a one-year seasonal cycle,
and compared with environmental parameters and the microbial community composi-
tion. Sulfoquinovosyldiacylglycerol (SQDG) was the most abundant IPL class, followed
by phosphatidylcholine (PC), phosphatidylglycerol (PG) and diacylglyceryl-(N,N,N)-
trimethylhomoserine (DGTS) in roughly equal concentrations, and smaller amounts of
phosphatidylethanolamine (PE). Although the total concentrations of these IPL classes
varied substantially throughout the year, the composition of the IPL pool remained re-
markably constant. Statistical analysis yielded negative correlations between IPL con-
centrations and dissolved inorganic nutrient concentrations, but possible phosphorous
limitation during the spring bloom did not result in changes in the overall planktonic IPL
composition. Significant correlations between SQDG, PC, PG and DGTS concentra-
tions and chlorophyll-a concentrations and algal abundances indicated that eukaryotic
primary producers were the predominant source of IPLs at this site. However, whilst
IPL concentrations in the water were closely tied to total algal abundances, the rapid
succession of different algal groups blooming throughout the year did not result in ma-
jor shifts in IPL composition. This shows that the most commonly occurring IPLs have
limited chemotaxonomic potential, and highlights the need to use targeted assays of
more specific biomarker IPLs.

1 Introduction

Intact polar lipids (IPLs) and their derived polar lipid fatty acids (PLFAs) are widely used
in ecological and biogeochemical studies as biomarkers to determine the abundance
and composition of extant microbial communities. These lipid molecules are mostly
glycerol-based with a hydrophilic (polar) head group attached to the sn-3 position and
a wide variety of fatty acid chains at the sn-1 and sn-2 positions (see Fahy et al., 2005,
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2009 for an overview and classification). As basic building blocks of cell membranes,
lipids comprise 11-23 % of the organic carbon in marine plankton (Wakeham et al.,
1997), and they often contain key elements such as nitrogen, phosphorous or sulphur.
The characterization of the lipid content of marine microbes has shown that specific
types of IPLs or PLFAs are synthesized predominately, or sometimes exclusively, by
specific microbial groups. For example, the sulfur-bearing glycerolipid sulfoquinovosyl-
diacylglycerol (SQDG) is only found in thylakoid membranes of photosynthetic organ-
isms (Benning, 1988; Frenzten, 2004), whilst long-chain polyunsaturated fatty acids
(PUFAs) are typical for marine microalgae (Volkman et al., 1998; Guschina and Har-
wood, 2006). Although this primarily culture-based chemotaxonomic record is still far
from comprehensive, specific IPLs or PLFAs may be used as biomarkers for the pres-
ence of their source organisms in different environments, with IPLs containing more
structural information than their derived PLFAs (Shaw, 1974; Lechevalier and Lecheva-
lier, 1989; Sturt et al., 2004). Moreover, IPLs are thought to be exclusively derived from
living microbes, due to their comparatively rapid degradation upon cell death (White et
al., 1979; Harvey et al., 1986), and IPL abundances are consequently used as a proxy
for the extant microbial biomass in environmental samples (e.g., Petsch et al., 2001;
Lipp et al., 2008; Zink et al., 2008). Finally, microbes have the ability to adjust the IPL
composition of their membranes in response to changes in their environment, such as
temperature or nutrient availability (e.g., Van Mooy et al., 2009), although such adap-
tations have mostly been studied in cultures maintained under controlled conditions
(Minnikin et al., 1974; Benning et al., 1995; Pernet et al., 2003; Martin et al., 2010).

At present the number of studies into IPL dynamics in the marine water column is
still limited. This is partly due to the comparatively recent development of suitable in-
strumentation for IPL analysis using multistage mass spectrometry coupled to high
performance liquid chromatography by electrospray ionization interface (HPLC/ESI-
ms”; Brigger et al., 1997; Fang and Barcelona, 1998). Thus far, IPL compositions
in marine waters have been determined in the Black Sea (Schubotz et al., 2009),
the Sargasso Sea and Pacific Ocean (Van Mooy et al., 2006, 2009; Van Mooy and
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Fredricks, 2010), the western North Atlantic (Popendorf et al., 2011) and the North
Sea (Brandsma et al., 2011a). At all of these sites the IPL composition is dominated
by a relatively small number of IPL classes, which are the glycerolipids sulfoquinovo-
syldiacylglycerol (SQDG) and mono- and digalactosyldiacylglycerol (MGDG and
DGDG), the glycerophospholipids phosphatidylcholine (PC), phosphatidylglycerol (PG)
and phosphatidylethanolamine (PE), and the betaine lipids diacylglyceryl-(N,N,N)-
trimethylhomoserine (DGTS), diacylglyceryl-hydroxymethyl-(N,N,N)-trimethylalanine
(DGTA) and diacylglyceryl-carboxyhydroxymethylcholine (DGCC). Comparison with
other parameters measured in the same waters yielded tentative relationships be-
tween the IPL composition and the microbial community composition (Van Mooy and
Fredricks, 2010; Brandsma et al., 2011a; Popendorf et al., 2011), as well as nutrient
availability (Van Mooy et al., 2006, 2009).

However, each of these studies presents a snapshot analysis, as all the data were
collected within short amounts of time (several weeks at most), and thus the temporal
variability of IPLs in marine waters has not yet been resolved in any detail. In this study
we monitored the IPL abundance and composition of coastal North Sea surface waters
during a one-year seasonal cycle. We compare this IPL time series with the microbial
abundances, community composition and environmental conditions at the same site
and time interval, in order to determine how these are reflected in the IPL composition
and abundances.

2 Materials and methods
2.1 Study site and time series

From 1974 onwards, bucket water samples for environmental and microbial analyses
have been collected from the NIOZ sampling jetty (53°00'06" N 4°47'21" E) at the en-
trance of the Marsdiep tidal inlet, which connects the North Sea and the westernmost
basin of the Dutch Wadden Sea (Fig. 1). Sampling is performed at high tide, to assure
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that the water originates from the southeastern coastal North Sea (cf. Alderkamp et al.,
2006), and includes measurements of salinity, water temperature and dissolved nutri-
ents, as well as chlorophyll-a concentrations, phytoplankton and bacterial abundances,
marine algal species composition and primary production. The sampling frequency is
40 to 60 times per year, varying from once or twice a month in winter up to twice a week
during phytoplankton spring blooms (e.g., Cadée and Hegeman, 2002). The current
study was synchronized with this long-term time series, and ran over a one-year time
period from March 2007 to March 2008, comprising 28 sampling dates.

2.2 Microbial analyses

Chlorophyll-a concentrations were assessed from 0.5-1.0 | water samples (filtered over
MgCOg-coated filters, as per Cadée and Hegeman, 2002), and calculated from non-
acidified values of chlorophyll-a according to Philippart et al. (2010). Primary pro-
duction was measured in an incubator, kept at in situ temperature and constant light
conditions, using the '4C method of Cadée and Hegeman (1974) and including actual
daily irradiation in the estimation model (Philippart et al., 2007). Phytoplankton sam-
ples were preserved with acid Lugol’s iodine, and cells were counted with a Zeiss in-
verted microscope using 5 ml counting chambers. Most algae were identified to species
level, but some were clustered into taxonomic and size groups (Philippart et al., 2000).
Analysis of changes in the phytoplankton species composition covered the nine most
numerous marine algal taxa, which together contributed more than 85 % to the total
numbers of marine algae in the Marsdiep during the study period.

Samples for (cyano)bacterial abundances were preserved with formalin (final con-
centration 1.5%) and snap-frozen in liquid nitrogen before storage at —80°C. After
thawing, the microbial community composition was analyzed with a bench-top flow
cytometer (Beckman Coulter XL-MCL) with reduced sheath-flow to enhance the sensi-
tivity of the instrument. Chlorophyll fluorescence (>630 nm) and phycoerythrin fluores-
cence (575+20nm) of the cyanobacteria were collected in separate photomultipliers
(Veldhuis and Kraay, 2004) and used as the primary selection criteria for the presence
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of cyanobacterial cells. Total bacterial numbers were determined by flow cytometry
after staining the cells with the green nuclear stain PicoGreen (MP, P-7581), according
to Veldhuis et al. (1997). 10 ul of a working solution PicoGreen (100x diluted in TBS
buffer) was added to 100 ul of sample and incubated for 15—-30 min prior to analysis.
Green fluorescence of the stained DNA (525 +20nm) was as used as the primary
selection criterion for the presence of bacterial cells.

2.3 Intact polar lipid analysis

Surface water samples for IPL analysis (~20 1) were taken with an acid-rinsed Nalgene
bottle from a depth of less than 1 m. The water was filtered through precombusted
0.7 um GF/F filters (142 mm diameter; Whatman, Clifton, NJ, USA), using a table-top
filtration unit. All filters were then freeze-dried and extracted using a modified Bligh-
Dyer procedure (Bligh and Dyer, 1959; Brandsma et al., 2011a), and IPL analysis of
the extracts was performed by high performance liquid chromatography electrospray
ionization tandem mass spectrometry (HPLC/ESI-MSz) using chromatographic condi-
tions as described by Jaeschke et al. (2009) and source and fragmentation parameters
as described by Boumann et al. (2006) and Brandsma et al. (2011a). Initially, the ex-
tracts were analyzed in positive and negative ion mode (two separate runs) using a
data dependent MS? routine in which a full scan (m/z 300-1000) was followed by frag-
mentation of the base peak of the resulting mass spectrum. ldentification of the major
IPL classes was based on diagnostic fragmentation patterns in the MS? mass spec-
tra (Kato et al., 1996; Brigger et al., 1997; Keusgen et al., 1997; Fang and Barcelona,
1998). Subsequently, targeted mass spectrometric experiments were used to elucidate
the structural diversity within each of the identified IPL classes, and for quantification of
the IPL classes and their constituent species. IPLs with a phosphatidylcholine (PC) or
diacylglyceryl-trimethylhomoserine (DGTS) head group were measured in positive ion
mode by parent ion scanning (m/z 300—1000) of fragment ions diagnostic for their polar
head groups (i.e., m/z 184 and m/z 236, respectively). IPLs with a phosphatidylglycerol
(PG), phosphatidylethanolamine (PE) or sulfoquinovosyldiacylglycerol (SQDG) head
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group were measured by neutral loss scanning (m/z 300-1000) for losses of 189 Da,
141 Da and 261 Da, respectively. The carbon number and degree of unsaturation of
the fatty acid moieties of the various IPLs were calculated using the m/z of the molec-
ular species, and these are denoted as such below (i.e., C5,., PC refers to an IPL
with a phosphatidylcholine head group and two fatty acids containing a total of 32 car-
bon atoms and two double bond equivalents; note that this does not include the glyc-
erol moiety). Information on individual fatty acid compositions of the predominant IPL
species were based on fragment ions or neutral losses diagnostic for fatty acids ob-
tained in the data dependent MS? experiments (see Brigger et al., 1997).

For quantification of the PGs, PCs, PEs, SQDGs and DGTSs, the peak areas of
each IPL class (total ion current) and their constituent IPL species (extracted ion chro-
matogram) were compared with the respective peak areas of known quantities of au-
thentic standards. The standards used in this study were C4.0/C16.0 PC, C16.0/C16.0 PG
and C44.0/C16.0 PE (all Avanti Polar Lipids, Alabaster, AL, USA), a mixture of SQDGs,
which contained predominately Cy4.1/C45.0 SQDG (~60 %), but also small amounts of
SQDGs with Cqg.0-16:1» C1s:0-18:1 and Cyq.5 fatty acid combinations (Lipid Products,
Redhill, Surrey, UK), and a standard of C4,4.0/C1g.4 DGTS, which was purified from IPL
extracts of Isochrysis galbana (CCMP, 1323) as described by Brandsma et al. (2011a).
Limits of detection were 50—100 pg on column for the glycerophospholipids, 100 pg on
column for the DGTSs and 1ng on column for the SQDGs. All IPL quantifications
were reproducible within a 10 % error between duplicate runs, and the instrument re-
sponse was monitored by repeated analysis of blanks and quantitative standards every
10 samples.

2.4 Statistical analyses

Relationships between the various datasets (IPL concentrations, environmental param-
eters, microbial abundances) were tested statistically in Systat 13 (Systat Software,
San Jose, CA). The measures of association between different variables were deter-
mined by calculating their Spearman’s rank correlation coefficients (0). This test was
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pendencies having corrected probability values (p) of less than 0.05 were considered
significant and are reported here. In addition, principal component analysis (PCA) was
used to extract principal components that could explain the variance in the IPL dataset,
as well as in datasets containing the IPL classes plus environmental parameters or
microbial groups.

3 Results
3.1 Temporal variability of environmental parameters

During the time series the sea surface temperature in the Marsdiep varied from around
6 °C in winter to almost 19°C in summer (Fig. 2a). Salinity was fairly stable at 26-31,
although lower values (down to 23) were measured in December 2007 and in early
spring. Levels of dissolved inorganic nutrients (P, N and Si) were highest at the end
of winter, then decreased sharply at the onset of spring and remained low throughout
most of the summer, before gradually increasing again through fall and winter (Fig. 2b).
Dissolved inorganic phosphate (DIP) levels ranged from a maximum of 1.1 pmoll'1
to <0.1 pmol ™", whilst silicate (DISi) levels ranged from 40—42 pmol1~" to less than
1 umol I=!, and nitrate concentrations ranged from 83 umoll'1 to 1 pmol 1. NO; was
the most abundant dissolved inorganic nitrogen (DIN) species in winter (>90 % of the
DIN pool), but comprised only 30-50 % in spring and summer, concurrent with strong
increases in NO, (4-8 %) and NHZ (30-65 %). The N:P ratio of dissolved inorganic nu-
trients was highest at the end of winter and in spring (generally around 80, but with brief
maxima up to 722), and lowest in summer (generally around 30, but with a minimum of
13).
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3.2 Microbial abundances and community composition

Primary production and chlorophyll-a concentrations varied strongly throughout the
year in response to the environmental conditions (Fig. 2c¢). In winter the primary pro-
duction was low at 3-6 ugC I"'h™", but increased to 165 pug C I~'h? during the spring
bloom. The same pattern was observed for the chlorophyll-a concentrations, which
increased from 2 ug I"" to 55 Hg I=1. After the spring bloom the primary production and
chlorophyll-a concentrations remained fairly high throughout the summer and fall, be-
fore decreasing to their low winter values.

Within the eukaryotic algae, a sequence of blooms was observed at various
times in the year, with total cell numbers of the nine most numerous taxa reaching
1.0 x 10° cells mlI™" between mid-March and mid-May (Fig. 2d). The first and by far the
most pronounced algal bloom occurred in spring and was formed by the Prymnesio-
phyte Phaeocystis globosa, with the colonial form predominating during the first part of
the bloom and the solitary form during the second part (Fig. 3). Concurrently, blooms
of the diatoms Chaetoceros socialis, Skeletonema costatum and Pseudonitzschia del-
icatissima, as well as other Prymnesiophytes and various unidentified flagellate algae
were observed. The second and more moderate algal bloom occurred between mid-
May and June and was formed by the diatoms Thalassiosira spp. and Chaetoceros
socialis, together with the Cryptophyte Plagioselmis spp. and various unidentified flag-
ellate algae (Fig. 3). Finally, the third and least pronounced algal bloom occurred dur-
ing summer (July and October) and was again formed by the diatoms Thalassiosira
spp. and Chaetoceros socialis, together with the Cryptophytes Plagioselmis spp. and
Hemiselmis spp. (Fig. 3) and cyanobacteria (up to 3.2 x 10° cells mi~"; Fig. 2d). Bacte-
rial numbers were fairly constant throughout the year (3-5 x 108 cells mI™"; Fig. 2d), but
were lowest at during the algal spring bloom (1.5 x 10° cells ml'1) and highest around
its end (6.1 x 10° cells ml‘1).
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3.3 IPL composition and abundances

Five major IPL classes were detected in the surface waters of the Marsdiep (Fig. 4):
SQDG, PC, PG, PE and DGTS. Although these classes comprised the greater part of
the base peak chromatogram, the betaine lipids DGTA and DGCC, as well as trace
amounts of the glycerolipids MGDG and DGDG, and a number of unidentified com-
pounds were detected in some of the samples as well. Each of the identified IPL
classes comprised a wide range of IPL species with differing fatty acid combinations
(Table S1). The least variety was observed in the SQDGs and PGs (around 50 species
each), followed by the PEs and DGTSs (around 90 species each), whilst the PCs
were the most varied class (more than 120 species). Fatty acid chain lengths gener-
ally ranged from C;, to C,,, although C,, to C,g fatty acids predominated (Table S1).
Whilst the majority of the fatty acids in each of the IPL classes had even chain lengths,
some odd-carbon number fatty acids (C,5 to C4g) were also detected, in particular in
the PEs and PGs. Long-chain polyunsaturated fatty acids (PUFAs) were common in
the PCs, but rare in the other glycerophospholipids and DGTSs, and not detected in the
SQDGs. The average fatty acid chain length and degree of unsaturation within each of
the IPL classes remained stable throughout the year. Average fatty acid chain lengths
were highest in the PCs (34.8 £0.7 carbon atoms), followed by the PEs (33.3+0.7),
PGs (33.2+0.2) and DGTSs (33.1+0.7) and lowest in the SQDGs (31.0+0.5). Sim-
ilarly, the average degrees of unsaturation were highest in the PCs (2.5+ 0.4 double
bond equivalents), followed by the PGs, PEs and DGTSs (all 1.7 +£0.2), and lowest in
the SQDGs (0.8+0.2).

Throughout the year the most abundant IPL class in coastal North Sea waters was
SQDG, with concentrations ranging from 0.9 ugl™" in winter to almost 35ug|™" at the
peak of the spring bloom (Fig. 2e). The SQDGs were dominated by seven species
(Cos.0> C30:1> C30:05 C30:2, C30.1, Cap.9 @and Cay4.4), Which on average comprised 80+4 %
of the total SQDG concentration throughout the year (Table S2). In winter, the most
abundant SQDG species were Cs,.4 SQDG (21 +3 %) and Cygq SQDG (15 +4 %),
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whilst during the spring bloom and in summer C,g., SQDG was the most abundant
species (26+4 %), followed by C35.1 SQDG (16+4 %), C39.1 SQDG (14+2 %) and Cs.g
SQDG (12+£3%). In addition, Cs,.3 and Cg4., SQDG, which normally comprised <1 %
of the total SQDGs, were present in elevated abundances during the spring bloom
(each up to 10 %).

The glycerophospholipids (i.e., PC, PG and PE) detected in the coastal North Sea
waters were always present in lower concentrations that the SQDGs. Summed glyc-
erophospholipid concentrations ranged from 0.6 pug I="in winter to 9.6 Hg I~" atthe peak
of the spring bloom. PGs and PCs were present in more or less equal amounts, with
concentrations ranging from 0.3 to 4.8 ug "' and 0.1 t0 3.9 Hg I, respectively (Fig. 2f).
The PEs were the least abundant of the quantified IPLs, with concentrations ranging
from less than 1Ongl'1 to 1.0 ugl'1.

The PGs were dominated by seven species (C3p.1, C30.0, Cz0.2, C30.1, Cas.0, C34.4 @and
Csg.0), Which on average comprised 66 +5 % of the total PG concentration throughout
the year (Table S2). Cj,.;4 PG was the most abundant species (17 +£3 %), whilst the
other species each comprised between 5 and 11 %. The PCs were the most diverse
IPL class and did not contain any predominant species. The eleven on average most
abundant PC species (Cog.0, C30:1; Ca0:0: Ca2:2, Ca2:15 Caai2, Caa:15 Caesr Casisr Caeiz
and Csg.¢) together comprised only 45 +4 % of the total PC concentration throughout
the year (Table S2). The highest contribution measured was 8 + 3 % (Cg4., PC during
the spring bloom), but generally each species constituted <5 % of the total PC. The
PEs also contained a wide range of species, which was again reflected in the com-
paratively low average contribution of the five predominant species (Czg.1, C30.5, C30.1,
Ca4.0 and Cgy.) to the total PE concentration (49 +9 %; Table S2). The most abundant
species were Cg,.4 PE and Cg4., PE (14 £4 % each), followed by Cg,., PE (9 4 %),
and C3p.1 PG and Cg,. PE (6 + 3 % each). The relative abundances of the predominant
glycerophospholipid species within their respective classes showed little temporal vari-
ation, with the same species predominating throughout the year. However, during the
spring bloom and in summer a number of additional species were detected in elevated
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abundances. These included C,g.1¢o PC, C45.11 PC, C34.4 PG, Cgs5.90 PG, Cgy.9 PE, Cas6
PE and C,y.¢ PE, which each temporarily constituted 5-11 % of the total concentration
of their respective class, but typically <2 % during most of the year (Table S2).

DGTS was present in roughly equal amounts to the glycerophospholipids PC and
PG, with concentrations ranging from 0.3 to 4.6 ug I (Fig. 2e). As with the PCs and
PEs, the DGTSs contained a wide range of species, which was reflected in the compar-
atively low average contribution of the four predominant species (Cs,.1, Cg4.0, C34.¢1 and
Csg.0) to the total DGTS concentration throughout the year (only 36 + 9 %; Table S2).
Of these, C34.4 DGTS was generally the most abundant species (11 £2 %). However,
during the spring bloom the DGTS composition was more diverse, with ten predom-
inant species (Cag.0, C30:1: C30:0 C31:1» Ca2:1: Caaizr Caa:15 Casi25 Caeis @and Cagp), Of
which only Cs4., DGTS contributed more than 7 % to the total concentration.

In summary, the IPL pool in the surface waters of the Marsdiep contained a large
number of IPL species (at least 400, but likely more), almost all of which could be
detected throughout the year, but with only a limited number of species (less than 40)
making up the largest part of the total IPL pool. These predominant species showed
little temporal variation, constituting fairly constant fractions of their respective classes
over time. However, during the spring bloom and in summer a number of IPL species
were present in elevated abundances (typically around 5 %, rather than <1 %), and the
IPL pool appeared to be somewhat less diverse than at other times.

4 Statistics relationships

The measures of dependence between each of the measured variables (Spearman’s
p, n=30) are given in Table S3. Significant positive correlations were found between
total SQDG, PC, PG, and DGTS concentrations, and chlorophyll-a concentrations
(0 >0.68), primary production (o0 > 0.68) and algal abundances (o > 0.53), and the
four classes were also strongly inter-correlated (o > 0.75). Scatter plots of the log-
transformed data revealed the relationship between these IPL classes and the algal

8906

BGD
8, 8895-8923, 2011

Temporal variations
in abundance and
composition of intact
polar lipids

J. Brandsma et al.

Title Page
Abstract Introduction
Conclusions References
Tables Figures
(R [ 4]
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/8/8895/2011/bgd-8-8895-2011-print.pdf
http://www.biogeosciences-discuss.net/8/8895/2011/bgd-8-8895-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

abundances to be linear, with 22 values ranging from 0.45 for DGTS to 0.71 for SQDG
(n=28; Fig. 5). Furthermore, negative relationships were observed with the dissolved
nutrient concentrations in the water (0 < —0.51; Table S3). PE was the only IPL class
that was not correlated with any environmental or microbial parameter measured here,
or any other IPL class (Fig. 5; Table S3). The concentrations of the predominant indi-
vidual IPL species were in general positively correlated with the total concentrations of
their respective classes.

Principal component analysis (PCA) of the concentrations of the five IPL classes
and microbial parameters yielded three principal components, explaining 86 % of the
total variance (56 %, 17 % and 13 % for principal components 1, 2 and 3, respectively)
in the dataset (Fig. 6 upper panel). PC, PG, SQDG and DGTS concentrations were
positively loaded on the first axis, together with the algal abundances, chlorophyll-a
concentrations and primary production, whilst PE was positively loaded on the second
axis. The bacterial abundances were positively loaded on the third axis, whilst the
cyanobacterial abundances were negatively loaded on the second axis, but positively
on the third axis. PCA of the IPL classes and environmental parameters yielded three
principal components, explaining 88 % of the variance (Fig. 6 lower panel). PC, PG,
SQDG and DGTS concentrations were again positively loaded on the first axis (44 %),
with salinity and temperature positively loaded on the second axis (32 %) and PE pos-
itively loaded on the third axis (12 %). The dissolved nutrient concentrations (DIP, DIN,
DISi) were all negatively loaded on both the first and the second axis. Finally, a PCA
of the most abundant IPL species in each class yielded only two principal components,
which explained 66 % of the total variance (data not shown). Almost all IPL species
were positively loaded on the first axis (55 %), whilst the PEs were the only class to
load positively on the second axis (11 %).
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5 Discussion

The predominant IPL classes observed in the coastal North Sea waters were the glyc-
erolipid SQDG, three glycerophospholipids (PG, PC and PE) and the betaine lipid
DGTS. The same classes have so far been found to dominate the IPL composition
in a range of marine waters, from the Pacific Ocean and Sargasso Sea (Van Mooy
et al., 2006, 2009; Van Mooy and Fredricks, 2010) to the Black Sea (Schubotz et al.,
2009), the western North Atlantic Ocean (Popendorf et al., 2011) and the North Sea
and English Channel (Brandsma et al., 2011a). Whilst the glycerolipids MGDG and
DGDG are often present in substantial quantities in some of these waters as well, they
were only detected in trace amounts in the Marsdiep samples, similar to the observa-
tions made by Brandsma et al. (2011a) for the entire North Sea. In line with previous
studies, the structural diversity in IPLs was large, comprising at least 400 different IPL
species, but of these only a limited number made up the bulk of the total IPL pool.
Furthermore, despite the substantial changes in environmental conditions and mi-
crobial community composition (Figs. 2 and 3), the temporal variations in the IPL pool
observed in the coastal North Sea waters were mostly quantitative and not qualitative.
In other words, while the abundances of the IPL pool varied greatly throughout the
year, its internal composition showed relatively little change, and was mostly limited to
an increased contribution during the spring and summer blooms of several IPL species
that were otherwise present in low concentrations. The principal component analyses
and Spearman results both indicated a high degree of covariance between the SQDGs,
PCs, PGs and DGTSs (o > 0.77), whilst the PEs were unrelated (Fig. 6 and Table S3).
The cause for the different statistical behaviour of the PEs compared to the other IPL
classes lies predominately in its behaviour during the spring bloom. Whilst IPLs in gen-
eral increased in concentration from mid-March onward, PE concentrations remained
at low values throughout this period (Fig. 2f). However, all IPLs reached maximum
concentrations at the start of May, and PE concentrations behaved in much the same
way as those of the other IPLs throughout the rest of the year. With this one significant
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exception, the general IPL composition in the coastal North Sea thus remained fairly
stable throughout the year, unlike the variable environmental conditions and microbial
community composition.

The IPL concentrations were statistically compared with the environmental data, in
order to determine the influence of external parameters, such as temperature or nutri-
ent concentrations. The results from the statistical tests all showed either a negative
or no relationship between the IPL abundances and environmental parameters, with
the exception of temperature (Fig. 6 lower panel and Table S3). Concentrations of
SQDG, PG, PC and DGTS were all negatively correlated with the nutrient concen-
trations in the water, and positively with temperature. These are likely indirect rela-
tionships, with nutrients being incorporated into microbial biomass during the spring
and summer blooms, which are triggered by rising temperatures and light availability.
Culture and environmental studies have shown that marine phytoplankton can rapidly
substitute glycerophospholipids with non-phosphorous IPLs (i.e., SQDG and betaine
lipids) when phosphate is scarce (Benning et al., 1995; Van Mooy et al., 2009; Martin
et al., 2010). However, in the coastal North Sea the ratios of SQDG to PG and DGTS
to PC (as proposed by Van Mooy et al., 2009) remained fairly stable throughout the
year (around 7.7 and 1.6, respectively), despite the strong decrease in DIP concentra-
tion during the spring bloom. Although there is a possibility that nitrogen rather than
phosphorous was the most limiting nutrient during the spring bloom, due to the com-
paratively more rapid and complete recycling of the latter (e.g., Dodds, 2003), the high
N:P ratios of dissolved inorganic nutrients measured in especially early April and late
May (up to 722) indicate that phosphorus may have been a limiting factor for phyto-
plankton growth. If this was the case, then the nutrient scarcity did not lead to a rapid
phytoplankton-wide adaptation of IPL compositions in this part of the North Sea.

The IPL concentrations were also statistically compared with chlorophyll-a concen-
trations, primary productivity and the microbial abundances and community composi-
tion. The significant correlations between SQDG, PG, PC and DGTS concentrations
with the primary production rate, chlorophyll-a concentrations and algal abundances
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imply that the majority of the IPLs in the coastal North Sea were related to the biomass
of the eukaryotic primary producers. This was also reflected in the PCA where these
IPL classes grouped together with these parameters (Fig. 6 upper panel). Scatter plots
of the log-transformed IPL and algal data showed that the relationship was linear and
strongest for SQDG (Fig. 5), in agreement with its role as the main anionic IPL in thy-
lakoid membranes of photosynthetic organisms (Benning, 1988; Janero and Barrnett,
1982; Frentzen, 2004). Like the total concentrations of their classes, the concentrations
of the predominant SQDG, PC, PG and DGTS species were correlated with primary
productivity, chlorophyll-a and algal abundances (Table S3). Indeed, studies of cultured
Thalassiosira (Zhukova, 2004; Martin et al., 2010), Chaetoceros (Servel et al., 1993;
Zhukova and Aizdaicher, 2001), Skeletonema (Berge et al., 1995), cryptophytes such
as Hemiselmis (Chuecas and Riley, 1969) and prymnesiophytes such as Phaeocystis
(Al-Hasan et al., 1990; Hamm and Rousseau, 2003), have shown that each of the dif-
ferent algal groups occurring in the coastal North Sea predominately synthesize PC,
PG, SQDG and betaine lipids (Sato 1992; Dembitsky, 1996; Kato et al., 1996), contain-
ing combinations of Cy4.9, Cy6.4_16:0- C1s:5-18:0» C20:5 and C,,.¢ fatty acids. Exceptions
were Cgy.9 SQDG, Cyy.4 PG and Cgy.q DGTS, which showed a better correlation with
cyanobacterial abundances and may thus have been derived from that microbial group.
However, cyanobacterial cell numbers did not correlate significantly with total concen-
trations of any of the IPL classes, and in the PCA results plotted on different axes
than the IPLs (Fig. 6 and Table S3). Combined with the low abundances of MGDG
and DGDG, which are common IPLs in cyanobacterial membranes (e.g., Murata and
Nishida, 1987; Harwood and Jones, 1989), this suggests that cyanobacteria did not
contribute substantially to the total IPL pool in the coastal North Sea. A likely reason
for this is the small cell size of cyanobacteria compared to eukaryotes, which trans-
lates into a much lower total amount of IPLs per cell (see Veldhuis and Kraay, 2004 for
a comparable argument on cell size and chlorophyll-a content).

The PE concentrations could not be related to any of the measured microbial abun-
dances, despite the fact that PE is presumed to be the main glycerophospholipid in
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bacterial membranes (Shaw, 1974; Lechevalier and Lechevalier, 1989). The sharp
increase in PE concentrations at the end of the spring bloom would point to a bac-
terial source, as maximum bacterial production rates in the Marsdiep are known to
coincide with the collapse of the bloom (Van Boekel et al., 1992). However, bacterial
abundances in the Marsdiep are strongly suppressed by heterotrophic nanoflagellate
grazing (Brussaard et al., 1995), and it is therefore possible that this led to a mismatch
between bacterial numbers and bacterially-produced IPLs (including PEs), or that the
bacterial IPLs were rapidly transferred to higher trophic levels. Additionally, concen-
trations of two PE species containing the PUFA Cy,¢ (i.e., C3g.,6 PE and Cyg.¢ PE)
were not related with the total PE concentrations, but rather with the concentrations of
the other glycerophospholipids and DGTS. As those IPL classes and long-chain PU-
FAs are normally associated with eukaryotic algae (Gushina and Harwood, 2006), a
non-bacterial origin for those two PE species is likely.

Despite the large number of IPL species quantified, general IPL analysis as per-
formed in this study appears to lack the chemotaxonomic resolution to accurately dif-
ferentiate within the microbial community, beyond the level of “marine algae”, “pho-
totrophs”, or “(cyano)bacteria”. The community composition analysis showed a rapid
succession of algal species, with subsequent bloom periods throughout the year, which
did not result in major changes in the IPL composition. However, the rapid fluctuations
in IPL abundances were closely linked to changes in the total algal counts, showing that
in this type of environment IPLs provide a good biomarker for living microbial biomass.
The lack of large temporal variations in the IPL composition suggests that the IPL con-
tents of the different algal groups occurring in the coastal North Sea must have been
relatively similar. Indeed, studies of the main algal groups occurring in this region show
that they all predominately synthesize PC, PG, SQDG and betaine lipids, containing
combinations of C44.9, C16.4_16:0- C1s:5_18:0- C20:5 @and C,,.¢ fatty acids. The prevalence
of these IPLs across a wide range of algal groups and throughout the world’s oceans
(e.g., Schubotz et al., 2009; Van Mooy and Fredricks, 2010; Popendorf et al., 2011;
Brandsma et al., 2011a) further suggests that general IPL screening of marine waters
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may yield little chemotaxonomic information, and in future studies it will therefore be
necessary to target more specific biomarker IPLs, such as anammox bacterial ladder-
anes (Jaeschke et al., 2009; Brandsma et al., 2011b) or cyanobacterial glycerolipids
(Bauersachs et al., 2009), in order to track the presence of specific microbial popula-
tions in the environment.

6 Conclusions

The coastal marine waters of the Marsdiep tidal inlet contain a wide range of IPLs,
whose composition is comparable to that of the adjacent southern North Sea. Despite
substantial variations in their abundances, the IPLs showed relatively little composi-
tional changes over the year. Concentrations of SQDGs, PGs, PCs and DGTSs mostly
co-varied, and their abundances were linked to the total algal biomass in the water. The
origin of the PEs at this site remains unclear, although they may have been related to
bacterial production at the end of the algal spring bloom. Intriguingly, the IPL species
distribution through time did not reflect the succession of algal groups, implying that
their IPL composition is generally similar. Finally, no direct influence of environmental
conditions on the IPL composition was observed.

Supplementary material related to this article is available online at:
http://www.biogeosciences-discuss.net/8/8895/2011/
bgd-8-8895-2011-supplement.pdf.
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Fig. 1. Map of the southeastern North Sea and Wadden Sea; the arrow marks the sampling

site at the entrance of the Marsdiep tidal inlet.
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Fig. 2. Time series of: (A) salinity and temperature; (B) dissolved inorganic nutrient concentrations; (C) primary
production and chlorophyll-a concentrations; (D) microbial abundances; (E) and (F) intact polar lipid concentrations

(see Fig. 4 for acronyms).
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Fig. 3. Abundances of the different algal groups in the Marsdiep. The upper graph shows the
absolute abundances, whilst the lower graph shows relative abundances (normalized to the

total counts).
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Fig. 4. Partial base peak chromatogram (positive ion — Gaussian smoothed) showing the
IPL classes identified in Marsdiep water during the phytoplankton spring bloom in late April.
Unidentified peaks are indicated with a question mark. Example structures are given for each
of the quantified IPL classes: diacylglyceryl-trimethylhomoserine (DGTS), phosphatidylglyc-
erol (PG), phosphatidylethanolamine (PE), phosphatidylcholine (PC) and sulfoquinovosyldia-
cylglycerol (SQDG). Each peak comprises a wide range of IPLs with the same head group, but
different fatty acids at the sn-1 and sn-2 positions (R and R” in the example structures). Due to
differences in response factors between the IPL classes, their relative abundances in the base
peak chromatogram are not necessarily indicative of their respective absolute abundances.
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